56 research outputs found

    High-predation habitats affect the social dynamics of collective exploration in a shoaling fish

    Get PDF
    Collective decisions play a major role in the benefits that animals gain from living in groups. Although the mechanisms of how groups collectively make decisions have been extensively researched, the response of within-group dynamics to ecological conditions is virtually unknown, despite adaptation to the environment being a cornerstone in biology. We investigate how within-group interactions during exploration of a novel environment are shaped by predation, a major influence on the behavior of prey species. We tested guppies (Poecilia reticulata) from rivers varying in predation risk under controlled laboratory conditions and find the first evidence of differences in group interactions between animals adapted to different levels of predation. Fish from high-predation habitats showed the strongest negative relationship between initiating movements and following others, which resulted in less variability in the total number of movements made between individuals. This relationship between initiating movements and following others was associated with differentiation into initiators and followers, which was only observed in fish from high-predation rivers. The differentiation occurred rapidly, as trials lasted 5 min, and was related to shoal cohesion, where more diverse groups from high-predation habitats were more cohesive. Our results show that even within a single species over a small geographical range, decision-making in a social context can vary with local ecological factors

    Numerical abundance and biomass reveal different temporal trends of functional diversity change in tropical fish assemblages

    Get PDF
    Funding: Fisheries Society of the British Isles; European Research Council (Grant Number(s): ERC AdG BioTIME 250189); The Leverhulme Trust (Grant Number(s): RPG-2019-402).Understanding how the biodiversity of freshwater fish assemblages changes over time is an important challenge. Until recently most emphasis has been on taxonomic diversity but it is now clear that measures of functional diversity can shed new light on the mechanisms that underpin this temporal change. Fish biologists use different currencies, such as numerical abundance and biomass, to measure the abundance of fish species. However, because they are not necessarily equivalent, these alternative currencies have the potential to reveal different insights into trends of functional diversity in natural assemblages. Here we asked how conclusions about temporal trends in functional diversity are influenced by the way in which the abundance of species has been quantified. To do this we computed two informative metrics, for each currency, for 16 freshwater fish assemblages in Trinidad's Northern Range that had been surveyed repeatedly over five years. We found that numerical abundance and biomass uncover different directional trends in these assemblages for each facet of functional diversity, and as such inform hypotheses about the ways in which these systems are being restructured. On the basis of these results we concluded that a combined approach, in which both currencies are employed, contributes to our understanding of the ecological processes that are involved in biodiversity change in freshwater fish assemblages.Publisher PDFPeer reviewe

    Evaluating detectability of freshwater fish assemblages in tropical streams : is hand-seining sufficient?

    Get PDF
    This work was funded by a European Research Council grant (BIOTIME 250189). AEM also acknowledges the Royal Society.Unprecedented threats to natural ecosystems mean that accurate quantification of biodiversity is a priority, particularly in the tropics which are underrepresented in monitoring schemes. Data from a freshwater fish assemblage in Trinidad were used to evaluate the effectiveness of hand-seining as a survey method in tropical streams. We uncovered large differences in species detectability when hand-seining was used alone, in comparison with when hand-seining and electrofishing were used together. The addition of electrofishing increased the number of individuals caught threefold, and increased the biomass fivefold. Some species were never detected using hand-seining, resulting in significant underestimates of species richness; rarefaction curves suggest that even when hand-seining effort increases, species richness is still underestimated. Diversity indices (Shannon and Simpson index) reveal that diversity was also significantly lower for hand-seined samples. Furthermore, the results of multivariate analyses investigating assemblage structure also differed significantly depending on whether they were based on hand-seined data alone, or a combination of hand-seining and electrofishing. Despite the extra equipment and maintenance required, these findings underline the value of including electrofishing when sampling tropical freshwater streams.Publisher PDFPeer reviewe

    Experimental harvesting of fish populations drives genetically based shifts in body size and maturation

    Get PDF
    Size-selective harvesting in commercial fisheries can induce rapid changes in biological traits. While experimental and wild harvested populations often exhibit clear shifts in body size and maturation associated with fishing pressure, the relative contributions of genetic and environmental factors to these shifts remain uncertain and have been much debated. To date, observations of so-called fisheries-induced evolution (FIE) have been based solely on phenotypic measures, such as size data. Genetic data are hitherto lacking. Here, we quantify genetic versus environmental change in response to size-selective harvesting for small and large body size in guppies (Poecilia reticulata) across three generations of selection. We document for the first time significant changes at individual genetic loci, some of which have previously been associated with body size. In contrast, variation at neutral microsatellite markers was unaffected by selection, providing direct genetic evidence for rapid evolution induced by size-selective harvesting. These findings demonstrate FIE in an experimental system, with major implications for the sustainability of harvested populations, as well as impacts on size-structured communities and ecosystem processes. These findings highlight the need for scientists and managers to reconsider the capacity of harvested stocks to adapt to, and recover from, harvesting and predation. © 2013 The Ecological Society of America

    Lenin on the Agrarian and Peasant Questions

    Get PDF
    Lenin attached great importance to the processes of agricultural and rural development. This is understandable in view of the fact that tsarist Russia where he prepared a socialist revolution had all the characteristics of an agrarian peasant country. Thus it was in Russia that many theories came into being which were contrary to the Marxist interpretations of historical evolution. Using the example of agriculture and peasantry, their authors tried to prove Marxist analysis wrong. They insisted that the special features of agriculture call for different laws of development (influence of natural factors, work with living matter, land as a special means of production, etc.). Thus defined, the agrarian question raised by bourgeois and revisionist economists did not exist for Lenin. For this sphere too is penetrated by capitalism, which leads to concentration, differentiation and social contrasts. One can only speak of different forms of its emergence in agriculture and industry, while the basic features remain the same. There are numerous works in which Lenin argued with the Populists and other champions of the agrarian question. The second group of questions which Lenin was concerned with derives from attempts to determine the attitude of the proletariat towards the peasants. Like Engels and Kautsky before him, he too was in favour of a firm alliance with small and medium farmers in the preparation for and realization of the revolution and, after its victory, for a gradual inclusion of the peasants in large-scale socialist agriculture on the principle of voluntary agreement and financial interest. The third group of questions studied by Lenin refers to the systems of co- -operation and association. In voluntary large-scale association of small producers Lenin saw the only way for agricultural development in the conditions of pettv ownership. But this involved an indispensable need for the development of industry which would provide agriculture with the necessary means

    Possible glimpses into early speciation: the effect of ovarian fluid on sperm velocity accords with post-copulatory isolation between two guppy populations.

    Get PDF
    Identifying mechanisms of reproductive isolation is key to understanding speciation. Among the putative mechanisms underlying reproductive isolation, sperm-female interactions (postmating-prezygotic barriers) are arguably the hardest to identify, not least because these are likely to operate at the cellular or molecular level. Yet sperm-female interactions offer great potential to prevent the transfer of genetic information between different populations at the initial stages of speciation. Here we provide a preliminary test for the presence of a putative postmating-prezygotic barrier operating between three populations of Trinidadian guppies (Poecilia reticulata), an internally fertilizing fish that inhabits streams with different levels of connectivity across Trinidad. We experimentally evaluate the effect of female ovarian fluid on sperm velocity (a predictor of competitive fertilization success) according to whether males and females were from the same (native) or different (foreign) populations. Our results reveal the potential for ovarian fluid to act as a postmating-prezygotic barrier between two populations from different drainages, but also that the strength of this barrier is different among populations. This result may explain the previous finding that, in some populations, sperm from native males have precedence over foreign sperm, which could eventually lead to reproductive isolation between these populations. This article is protected by copyright. All rights reserved

    Evolution of non-kin cooperation:social assortment by cooperative phenotype in guppies

    Get PDF
    © 2019 The Authors. Cooperation among non-kin constitutes a conundrum for evolutionary biology. Theory suggests that non-kin cooperation can evolve if individuals differ consistently in their cooperative phenotypes and assort socially by these, such that cooperative individuals interact predominantly with one another. However, our knowledge of the role of cooperative phenotypes in the social structuring of real-world animal populations is minimal. In this study, we investigated cooperative phenotypes and their link to social structure in wild Trinidadian guppies (Poecilia reticulata). We first investigated whether wild guppies are repeatable in their individual levels of cooperativeness (i.e. have cooperative phenotypes) and found evidence for this in seven out of eight populations, a result which was mostly driven by females. We then examined the social network structure of one of these populations where the expected fitness impact of cooperative contexts is relatively high, and found assortment by cooperativeness, but not by genetic relatedness. By contrast, and in accordance with our expectations, we did not find assortment by cooperativeness in a population where the expected fitness impact of cooperative contexts is lower. Our results provide empirical support for current theory and suggest that assortment by cooperativeness is important for the evolution and persistence of non-kin cooperation in real-world populations

    Dynamic social networks in guppies (Poecilia reticulata)

    Get PDF
    One of the main challenges in the study of social networks in vertebrates is to close the gap between group patterns and dynamics. Usually scan samples or transect data are recorded to provide information about social patterns of animals, but these techniques themselves do not shed much light on the underlying dynamics of such groups. Here we show an approach which captures the fission-fusion dynamics of a fish population in the wild and demonstrates how the gap between pattern and dynamics may be closed. Our analysis revealed that guppies have complex association patterns that are characterised by close strong connections between individuals of similar behavioural type. Intriguingly, the preference for particular social partners is not expressed in the length of associations but in their frequency. Finally, we show that the observed association preferences could have important consequences for transmission processes in animal social networks, thus moving the emphasis of network research from descriptive mechanistic studies to functional and predictive ones. © 2014 Springer-Verlag Berlin Heidelberg
    corecore